.Make certain being compatible along with several structures, including.NET 6.0,. Internet Structure 4.6.2, and.NET Requirement 2.0 and also above.Lessen dependences to stop model disputes and also the demand for binding redirects.Transcribing Audio Information.Among the major functionalities of the SDK is actually audio transcription. Creators can easily record audio files asynchronously or in real-time. Below is actually an instance of just how to record an audio data:.utilizing AssemblyAI.utilizing AssemblyAI.Transcripts.var client = brand-new AssemblyAIClient(" YOUR_API_KEY").var transcript = await client.Transcripts.TranscribeAsync( brand new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3". ).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).For nearby data, similar code can be used to achieve transcription.wait for utilizing var stream = brand new FileStream("./ nbc.mp3", FileMode.Open).var records = wait for client.Transcripts.TranscribeAsync(.stream,.brand new TranscriptOptionalParams.LanguageCode = TranscriptLanguageCode.EnUs.).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).Real-Time Sound Transcription.The SDK also holds real-time sound transcription using Streaming Speech-to-Text. This component is actually especially beneficial for applications requiring quick processing of audio data.using AssemblyAI.Realtime.wait for making use of var scribe = new RealtimeTranscriber( brand new RealtimeTranscriberOptions.ApiKey="YOUR_API_KEY",.SampleRate = 16_000. ).transcriber.PartialTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Partial: transcript.Text "). ).transcriber.FinalTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Final: transcript.Text "). ).await transcriber.ConnectAsync().// Pseudocode for receiving sound coming from a mic for instance.GetAudio( async (part) => await transcriber.SendAudioAsync( chunk)).await transcriber.CloseAsync().Taking Advantage Of LeMUR for LLM Apps.The SDK combines along with LeMUR to permit designers to create huge language design (LLM) applications on vocal records. Listed here is actually an instance:.var lemurTaskParams = brand-new LemurTaskParams.Cue="Offer a quick recap of the records.",.TranscriptIds = [transcript.Id],.FinalModel = LemurModel.AnthropicClaude3 _ 5_Sonnet..var feedback = await client.Lemur.TaskAsync( lemurTaskParams).Console.WriteLine( response.Response).Sound Intelligence Versions.Furthermore, the SDK possesses integrated support for audio intellect styles, permitting feeling analysis and various other innovative attributes.var transcript = await client.Transcripts.TranscribeAsync( brand-new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3",.SentimentAnalysis = real. ).foreach (var result in transcript.SentimentAnalysisResults!).Console.WriteLine( result.Text).Console.WriteLine( result.Sentiment)// FAVORABLE, NEUTRAL, or even downside.Console.WriteLine( result.Confidence).Console.WriteLine($" Timestamp: result.Start - result.End ").For additional information, see the main AssemblyAI blog.Image source: Shutterstock.